Problem 50

A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other variables are lengths. Determine which formulas are dimensionally consistent. (a) $V=\pi r^{2} h$; (b) $A=2 \pi r^{2}+2 \pi r h$; (c) $V=0.5 b h$; (d) $V=\pi d^{2}$; (e) $V=\pi d^{3} / 6$.

Solution

Part (a)

Check the units of both sides.

$$
\begin{aligned}
{[V] } & \stackrel{?}{=}\left[\pi r^{2} h\right] \\
& \stackrel{?}{=}[\pi]\left[r^{2}\right][h] \\
& \stackrel{?}{=} 1 \cdot \mathrm{~L}^{2} \cdot \mathrm{~L} \\
& =\mathrm{L}^{3}
\end{aligned}
$$

Volume has dimensions of length cubed, so this equation is dimensionally consistent.

Part (b)

Check the units of both sides.

$$
\begin{aligned}
{[A] } & \stackrel{?}{=}\left[2 \pi r^{2}+2 \pi r h\right] \\
& \stackrel{?}{=}\left[2 \pi r^{2}\right]+[2 \pi r h] \\
& \stackrel{?}{=}[2 \pi]\left[r^{2}\right]+[2 \pi][r][h] \\
& \stackrel{?}{=} 1 \cdot \mathrm{~L}^{2}+1 \cdot \mathrm{~L} \cdot \mathrm{~L} \\
& \stackrel{?}{=} \mathrm{L}^{2}+\mathrm{L}^{2} \\
& =2 \mathrm{~L}^{2}
\end{aligned}
$$

Area has dimensions of length squared, so this equation is dimensionally consistent. The coefficient 2 is insignificant.

Part (c)

Check the units of both sides.

$$
\begin{aligned}
{[V] } & \stackrel{?}{=}[0.5 b h] \\
& \stackrel{?}{=}[0.5][b][h] \\
& \stackrel{?}{=} 1 \cdot \mathrm{~L} \cdot \mathrm{~L} \\
& \neq \mathrm{L}^{2}
\end{aligned}
$$

Volume has dimensions of length cubed, so this equation is not dimensionally consistent.

Part (d)

Check the units of both sides.

$$
\begin{aligned}
{[V] } & \stackrel{?}{=}\left[\pi d^{2}\right] \\
& \stackrel{?}{=}[\pi]\left[d^{2}\right] \\
& \stackrel{?}{=} 1 \cdot \mathrm{~L}^{2} \\
& \neq \mathrm{L}^{2}
\end{aligned}
$$

Volume has dimensions of length cubed, so this equation is not dimensionally consistent.

Part (e)

Check the units of both sides.

$$
\begin{aligned}
{[V] } & \stackrel{?}{=}\left[\frac{\pi}{6} d^{3}\right] \\
& \stackrel{?}{=}\left[\frac{\pi}{6}\right]\left[d^{3}\right] \\
& \stackrel{?}{=} 1 \cdot \mathrm{~L}^{3} \\
& =\mathrm{L}^{3}
\end{aligned}
$$

Volume has dimensions of length cubed, so this equation is dimensionally consistent.

